Closure Operators in Almost Distributive Lattices
نویسندگان
چکیده
The concept of a closure operator ∇ in an ADL R was introduced. If ∇R is the set of all ∇−invariant elements of R, then the concepts of ∇R−ideal, ∇R−prime ideal are introduced. The interrelations between ∇R−prime ideal and minimal prime ideal of R are derived. If B is the Birkhoff centre of R, then a sufficient condition is derived for a B−ideal to be a minimal prime ideal of R. Mathematics Subject Classification: 06D99
منابع مشابه
Order Almost Dunford-Pettis Operators on Banach Lattices
By introducing the concepts of order almost Dunford-Pettis and almost weakly limited operators in Banach lattices, we give some properties of them related to some well known classes of operators, such as, order weakly compact, order Dunford-Pettis, weak and almost Dunford- Pettis and weakly limited operators. Then, we characterize Banach lat- tices E and F on which each operator from E into F t...
متن کاملDistributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کاملCoalgebraic representations of distributive lattices with operators
We present a framework for extending Stone’s representation theorem for distributive lattices to representation theorems for distributive lattices with operators. We proceed by introducing the definition of algebraic theory of operators over distributive lattices. Each such theory induces a functor on the category of distributive lattices such that its algebras are exactly the distributive latt...
متن کاملDuality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I
The main goal of this paper is to explain the link between the algebraic and the Kripke-style models for certain classes of propositional logics. We start by presenting a Priestley-type duality for distributive lattices endowed with a general class of well-behaved operators. We then show that nitely-generated varieties of distributive lattices with operators are closed under canonical embedding...
متن کاملLattice Theory for Rough Sets
This work focuses on lattice-theoretical foundations of rough set theory. It consists of the following sections: 1: Introduction 2: Basic Notions and Notation, 3: Orders and Lattices, 4: Distributive, Boolean, and Stone Lattices, 5: Closure Systems and Topologies, 6: Fixpoints and Closure Operators on Ordered Sets, 7: Galois Connections and Their Fixpoints, 8: Information Systems, 9: Rough Set ...
متن کامل